When universal separated graph $C^*$-algebras are exact
نویسندگان
چکیده
منابع مشابه
When are two commutative C*-algebras stably homotopy equivalent?
The purpose of this paper is to investigate the homotopy theory of C*algebras of the formC0(X)⊗K, whereX is a finite connected CWcomplex with base point; hereC0(X) is theC*-algebra of continuous complex-valued functions which vanish at the base point, K is the C*-algebra of compact operators on a separable infinite dimensional complex Hilbert space, and a homotopy between two C*-algebra maps is...
متن کاملLocal higher derivations on C*-algebras are higher derivations
Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...
متن کاملSubalgebras of graph C*-algebras
We prove a spectral theorem for bimodules in the context of graph C∗-algebras. A bimodule over a suitable abelian algebra is determined by its spectrum (i.e., its groupoid partial order) iff it is generated by the Cuntz– Krieger partial isometries which it contains iff it is invariant under the gauge automorphisms. We study 1-cocycles on the Cuntz–Krieger groupoid associated with a graph C∗-alg...
متن کاملC*-algebras of Graph Products
For certain graphs, we can associate a universal C*-algebra, which encodes the information of the graph algebraically. In this paper we examine the relationships between products of graphs and their associated C*-algebras. We present the underlying theory of associating a C*-algebra to a direct graph as well as to a higher rank graph. We then provide several isomorphisms relating C*-algebras of...
متن کاملHigher Rank Graph C∗-algebras
Building on recent work of Robertson and Steger, we associate a C∗–algebra to a combinatorial object which may be thought of as a higher rank graph. This C∗–algebra is shown to be isomorphic to that of the associated path groupoid. Various results in this paper give sufficient conditions on the higher rank graph for the associated C∗–algebra to be: simple, purely infinite and AF. Results concer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods of Functional Analysis and Topology
سال: 2020
ISSN: 1029-3531
DOI: 10.31392/mfat-npu26_2.2020.05